Glossary

Blue Carbon 102

Blue Carbon 102

Blue Carbon 102


Red, White, & Blue (Carbon): The Global Distribution of Blue Carbon Projects and Opportunities in the United States


by: Allyson Ulsh | January 19, 2023

 

Blue Carbon 102 | Allyson UlshIndonesia is home to the largest percentage of mangrove ecosystems globally. Mangroves are critical ecosystems that can sequester and store carbon dioxide, referred to as blue carbon due to their coastal nature.

Where is Blue Carbon Located?

Our team dove headfirst into the world of blue carbon in a previous blog post, Blue Carbon 101. Through exploring how blue carbon differs from ‘regular’ carbon, which ecosystems sequester it, and the interwoven community and biodiversity benefits, it’s clear that blue carbon projects have a fundamental role in addressing and mitigating climate change. Even with the understanding that mangroves, seagrass meadows, and tidal marshes are responsible for sequestering blue carbon, it’s difficult to envision precisely where these critical ecosystems are in the world.

Mangroves are found worldwide in the intertidal zones along coastlines, with a large percentage of the species’ density and diversity in Southeast Asia. Indonesia has over 3.3 million hectares (approximately 8.2 million acres) of mangroves along its coastlines, accounting for nearly 20% of the world’s global mangrove inventory [1]. Brazil, Nigeria, and Mexico jointly account for another 20% of total mangroves worldwide [2].

Seagrasses (not to be confused with seaweed) can be found globally along coastlines, including regions along the Artic circle. Similar to mangrove distribution, the density and diversity of seagrasses are highest along the coasts of Southeast Asian countries throughout the Pacific [3]. Tidal marshes, defined as the wetland areas along and between coastal areas that are inundated by daily tidal patterns, can also be found globally. The contiguous United States, excluding Hawaii and Alaska, has over 2.9 million hectares (7.2 million acres) of intertidal vegetated coastal wetlands, with mangroves and tidal marshes included in this inventory [4].

Unfortunately, mangrove, seagrass, and tidal marsh ecosystems face significant global threats. In addition to removing existing habitats, coastal development alters the hydrology and increases pollution and sedimentation, putting additional pressure on these blue carbon ecosystems. Mangrove ecosystems suffer from deforestation due to increasing pressures from coastal agriculture, including but not limited to shrimp farming, fishing, and salt production. Rising sea levels, changing salinities, and increasing temperatures all stress these critical environments, contributing to further habitat loss across all coastal ecosystems.

Seagrass meadows play an essential role in sequestering and storing blue carbon in the ocean | Blue Carbon 102 by Allyson UlshSeagrass meadows play an essential role in sequestering and storing blue carbon in the ocean.

Where Are Today’s Blue Carbon Projects?

Current blue carbon projects listed on Verra’s Verified Carbon Standard (VCS) and Community, Climate, and Biodiversity registries focus primarily on mangrove restoration across four continents. These mangrove projects highlight how carbon finance can be coupled with local conservation organizations to scale restoration efforts. Mirroring the mangrove hotspots discussed above, many of these projects are in the coastal regions of Indonesia, India, China, Nigeria, Senegal, and Mexico. There are currently 28 mangrove projects across 13 countries listed on the VCS registry at various points of project development.

Within the blue carbon space, ClimeCo has partnered with YAKOPI to fund and restore 6,000 acres of mangroves in Indonesia’s Aceh and North Sumatra regions. This mangrove restoration project involves the community throughout the entire process. Including collecting seeds from mangrove propagules, propagating the seeds in nurseries, assessing planting locations, planting the mangroves, and monitoring and maintaining the stand health. More details on this project will be shared in a forthcoming blog post highlighting the incredible community and project partners that have made this project possible.

While several mangrove restoration projects are listed on Verra’s registries, only one listed blue carbon project exists within the United States. This project involves the restoration of seagrass meadows through the direct seeding of seagrass species along Virginia’s coastline. With blue carbon ecosystems accounting for less than 1% of the United States’ natural land area, the opportunity for U.S. blue carbon projects exists but certainly with its own set of challenges.

Blue Carbon Projects available on Verra's Verified Carbon Standard Registry | Blue Carbon 102 by Allyson UlshBlue carbon project locations based on project information publicly available on Verra’s Verified Carbon Standard Registry. Smaller countries on the map may only have one icon representing multiple projects in proximity. 

Louisiana’s coastline is home to the largest, most productive tidal wetland area across the United States | Blue Carbon 102 by Allyson UlshA Louisiana Department of Wildlife and Fisheries Marsh Master moving through Louisiana’s tidal wetlands. Louisiana’s coastline is home to the largest, most productive tidal wetland area across the United States.

Coastal Blue Carbon in the United States

David Chen and I attended the Restoring America’s Estuaries: Coastal and Estuarine Summit early in December 2022 to learn more about the prospects of blue carbon projects in the United States. More than 1,375 coastal restoration professionals joined us to learn about opportunities and challenges surrounding blue carbon projects across the United States. Through attending several blue carbon sessions, we learned about topics such as seagrass carbon variability in California, the blue carbon market potential in Texas, and how to utilize blue carbon to support coastal wetland restoration in the Northeast.

While it’s clear that blue carbon projects have a fundamental role in addressing and mitigating climate change, it’s also evident that sea-level rise and its variable effects across different blue carbon ecosystems will complicate future project planning and development. Existing coastal marshes across the mid-Atlantic region are forecasted to be significantly vulnerable to sea-level rise. However, an opportunity exists for transitional zone habitats to migrate inland. Sea level rise will need to be accounted for in all aspects of blue carbon project development planning and implementation to ensure ecosystem, and subsequent carbon, permanence.

Additionally, there was a degree of uncertainty addressed in relation to the most effective restoration techniques for tidal marshes and seagrasses. Localized considerations, such as hydrology, in-land development, water quality, and salinity, among others, all play a role in the carbon sequestration rates across ecosystems. Careful consideration of the science behind blue carbon restoration will need to be accounted for in the quantification of carbon emission removals across landscapes.

Lastly are the challenges posed by jurisdictional claims. Carbon rights for the coastal and seafloor blue carbon ecosystems in the United States lie within different governmental agency jurisdictions. All blue carbon projects must involve the appropriate governmental agencies and foster relationships with the state legislature to ensure that projects and partners meet both state-led initiatives and voluntary carbon market standards. As sea-level rise affects these vulnerable ecosystems, the question of jurisdiction will become more complicated.

The scientific expertise and restoration partnership experience was unparalleled across the presentations. Our team’s overall takeaway from the conference was that while developing blue carbon projects in the United States is challenging across several facets, it is certainly possible. As a leader in developing and managing environmental commodities, we are excited to see how blue carbon projects will continue to expand and how we can be at the forefront of domestic blue carbon project development.



[1]  The Economics of Large-scale Mangrove Conservation and Restoration in Indonesia (worldbank.org)

[2]  Global Forest Resources Assessment (fao.org)
[3]  Seagrass and Seagrass Beds | Smithsonian Ocean (si.edu)
[4]  Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020


About the Author

Allyson Ulsh manages ClimeCo’s portfolio of nature-based solutions projects. From reforestation in tropical cloud forests to replanting bald cypress trees in Louisiana, Allyson understands the importance of coupling carbon finance with local stakeholder engagement to scale restoration efforts. Allyson is a Project Associate working within the Nature-Based Solutions project team. She received her Bachelor of Science degree in Environmental Resource Management from Pennsylvania State University, Schreyer Honors College. 

Blue Carbon 101

Blue Carbon 101

Blue Carbon 101


by: David Chen and Daniel Frasca | September 29, 2022

 

tidal marsh september's blogBlue carbon includes important coastal and marine ecosystems such as mangroves, seagrass meadows, and tidal marshes.

What is Blue Carbon?

On the fringes of Earth’s continents lies one of nature’s greatest climate regulation mechanisms: vast reserves of organic carbon known as blue carbon. “Blue carbon” refers to the organic carbon captured and stored in coastal and marine ecosystems and can be used to refer to the marine habitats that sequester and store carbon dioxide.

The United Nations first used the term “blue carbon” in a 2009 report that recognized the critical role some coastal and marine ecosystems play in drawing down carbon from the atmosphere. The United Nations Framework Committee on Climate Change defines blue carbon as mangroves, seagrass meadows, and tidal marshes. As the field of blue carbon grows, additional ecosystems will likely be recognized as blue carbon, a topic we will discuss in an upcoming blog.

As of late, blue carbon has become a hot topic due to the immense capacity of these ecosystems to draw down atmospheric carbon levels and provide irreplaceable ecosystem services.

Big Mangrove September BlogThe intricate root systems of mangroves on the Indonesian island of Nias provide protection from storm surge and coastal erosion for local communities.

Blue Carbon as a Climate Solution

What makes coastal and marine ecosystems different than their terrestrial equivalents? After all, aren’t all plants capable of sequestering carbon? While that may be true, blue carbon ecosystems can capture 10-50 times more carbon per unit than their land-dwelling counterparts. In fact, every year, blue carbon ecosystems bury underground a comparable amount of carbon as terrestrial forests despite occupying less than 3% of the global forest area. The open ocean is also no match for the carbon-capturing powers of coastal blue carbon ecosystems. For reference, coastal habitats represent about 2% of the oceans’ surface area yet are responsible for nearly 50% of carbon sequestered in marine sediments. These blue carbon ecosystems, nestled between the endless ocean and vast landmasses, represent a thin slice of Earth working overtime to regulate the climate.

Fisherman September BlogLocal Indonesian fisherman sourcing fish and shellfish in a pristine blue carbon ecosystem

How Blue Carbon Ecosystems Sequester Carbon

Coastal habitats capture carbon more effectively than their terrestrial counterparts due to their higher efficiency in converting solar energy into organic matter – often described as a high primary productivity rate. More importantly, blue carbon ecosystems trap sediment and organic matter such as leaf litter in their roots and allow that carbon to accumulate in the seabed. This process is known as “sedimentation” and accounts for 50 – 90% of all the carbon sequestered in these coastal ecosystems.

This ability to store carbon underground in soils and sediment is one of blue carbon’s most unique and essential functions. Aboveground biomass, such as the trees in a forest, will sequester and store carbon over its lifetime. However, at the end of the tree’s lifecycle, the tree will die and release carbon back into the atmosphere during the decomposition process. In contrast, belowground carbon sequestered by blue carbon ecosystems can remain undisturbed for hundreds or even thousands of years. A prime example is a seabed meadow off the coast of Spain that has accumulated over a 35-foot-thick carbon deposit over the span of 6,000 years. The stable and enduring nature of these reserves is created by the seabed’s saltwater and oxygen-deprived conditions, which slow the pace of decomposition and effectively trap carbon underground. Belowground carbon also represents a more resilient store of carbon stock as it is insulated against natural disturbances, such as fire and heavy rainfall, which are expected to become more frequent and intense as the climate continues to warm. Not only can carbon stored underground reduce the symptoms of the climate crisis, but it can also endure the worst effects of climate change.  

Pretty Landscape September's BlogMangrove restoration site at a local village in Aceh, Indonesia

Beyond Carbon

For the people connected to these ecosystems, the benefits of blue carbon extend far beyond combating climate change. Blue carbon habitats provide extensive benefits to biodiversity, local communities, and the millions of people dependent on them for their food supply. Aquatic plants found in these coastal blue carbon environments provide the shelter, nutrients, and water filtration services on which aquatic animals depend- simply put, many forms of animal life cannot survive without these foundational habitats. Flourishing coastal habitats increase food security and provide coastal communities with fishery and ecotourism opportunities. Mangroves and tidal marshes mitigate coastal erosion and insulate coastal communities from storm surges during extreme weather events. It’s been estimated that the annual value of the ecosystem services provided by blue carbon habitats hovers around $190 billion.

The world’s blue carbon ecosystems have a fundamental role in addressing climate change. Focusing our attention on the conservation and restoration of these precious ecosystems will have an immense impact in returning life to coastal waters and uplifting surrounding communities.

 


About the Authors

David Chen is passionate about nature-based solutions and developing carbon offset projects that protect and restore native ecosystems. From replanting bald cypress trees in the Mississippi River delta to reestablishing mangroves forests in international countries, David understands the positive impact these projects have on biodiversity, coastal resiliency and improving local livelihoods. David is a Program Development Manager at ClimeCo and has a Master of Environmental Management from Duke University’s Nicholas School of the Environment and received his Bachelor of Science from the University of California, Riverside.  

Daniel Frasca is an Associate on the Program Development Team specializing in nature-based solutions. He joined the team with previous business development, finance, and sales experience in the residential solar industry and leadership experience in the nonprofit sector. Daniel earned his Bachelor of Science degree in Management from Boston College, with a concentration in Finance and a minor in Environmental Studies.

ClimeCo Partners with YAKOPI and PUR Projet for Mangrove Reforestation Project in Indonesia, Bolstering the Ecology and Economy of the Region

ClimeCo Partners with YAKOPI and PUR Projet for Mangrove Reforestation Project in Indonesia, Bolstering the Ecology and Economy of the Region

NEWS RELEASE
FOR IMMEDIATE DISTRIBUTION
CONTACT
Nancy Marshall, Vice President, Marketing
+1 484.415.7603 or nmarshall@climeco.com  

ClimeCo Partners with YAKOPI and PUR Projet for Mangrove Reforestation Project in Indonesia, Bolstering the Ecology and Economy of the Region

ClimeCo’s Nature-Based Carbon Offset Credits to Fund 6,000 Acres of Mangroves in Aceh and North Sumatra Regions Decimated by Aquaculture and Tsunami

Women working on YAKOPI and Pur Projet mangrove restoration project

Boyertown, PA – April 4, 2022 – ClimeCo, a leader in the development and management of environmental commodities, announces its partnership with YAKOPI (Yayasan Konservasi Persisir Indonesia) and PUR Projet for the reforestation of vital mangroves in the Aceh and North Sumatra Regions of Indonesia.

Mangroves sequester three to five times the amount of carbon as regular forests. Indonesia is home to over 20% of the world’s mangroves. In the last three decades, roughly 40% of Indonesia’s mangroves have been lost due to shrimp and fish aquaculture, leaving many former shrimp ponds abandoned and local communities with little access to economic opportunities. The North Sumatra region has lost 60% of its pristine mangroves due to aquaculture, putting coastal resilience, biodiversity, and wildlife habitats at enormous risk. Aquaculture isn’t the only culprit in the loss of mangroves; in the Aceh region, a substantial amount of its mangroves were lost due to a tsunami in 2004.

ClimeCo will fund the reforestation of these mangroves by selling the resulting third-party verified carbon credits and implementing the project through their local partnerships with YAKOPI and PUR Projet. This investment will support gender-equitable employment, ecosystem services payment to local communities, ecotourism business development, and a pilot program for locals to implement silvofisheries- a form of sustainable aquaculture that integrates planting and maintenance and protection of mangrove forests in aquaculture ponds.

The improved livelihoods of the local communities and the long-term success of this mangrove reforestation project are interdependent- with the support of our partnerships, this project has all the right elements to achieve both,” says ClimeCo Program Development Manager David Chen

Participants in the voluntary carbon markets are becoming more aware of the environmental, social, and economic co-benefits of mangrove reforestation/conservation projects, and demand for these carbon offsets is accelerating.

For years, clients have looked for ways to support carbon emission reductions in the oceans.  Mangrove projects offer a locally beneficial, third party verified, registry approved method to do so,” says ClimeCo Vice President, Voluntary Markets Dan Linsky.

Man sitting on mangrove restoration field

ClimeCo has witnessed substantial, diverse, global interest in the purchase of mangrove projects from its carbon offset buyers. Such interest has been expressed during ongoing conversations, and as such, ClimeCo has transacted hundreds of thousands of mangrove-derived voluntary CO2e reductions so far in 2022.

Such interest is grounded in corporate and consulting staff recognition of the charismatic, abundant, substantial, and important co-benefits of mangrove projects. From shoreline protection to habitat restoration, generating new jobs to rebuilding food supplies, the seemingly endless list of mangrove restoration impacts in addition to carbon capture and storage has been very moving to carbon offset purchasers. These benefits represent why ClimeCo has approached this project and so many of its past projects with enthusiasm: These projects are more than just carbon reductions; we are looking to go beyond.

About Our Partners

  • YAKOPI is a local Indonesia group dedicated to restoring mangroves and providing employment opportunities for local women and youth. Directed by Eling Tuhono, YAKOPI are experts and local leaders in mangrove restoration and will be responsible for managing many logistical aspects of the program on the ground.
  • PUR Projet is a certified B Corporation that specializes in designing and implementing agroforestry projects, nature-based solutions, and sustainable supply chain interventions. As an on-the-ground project developer, PUR Projet will manage components of the carbon offset certification, help navigate local culture/politics and advise on reforestation efforts.

About ClimeCo

ClimeCo is a respected global advisor, transaction facilitator, trader, and developer of environmental commodity market products and related services. We specialize in voluntary carbon, regulated carbon, renewable energy credits, plastics credits, and regional criteria pollutant trading programs.  Complimenting these programs is a team of professionals skilled in providing sustainability program management services, and developing and financing of GHG abatement and mitigation systems.

For more information or to discuss how ClimeCo can drive value for your organization, contact us at +1 484.415.0501, info@climeco.com, or through our “contact us” page at climeco.com. Be sure to follow us on LinkedIn, Facebook, Instagram, and Twitter using our handle, @ClimeCo.